TABLE OF CONTENT

CHAPTER 1 : INTRODUCTION ceescssssecssscncsesscnscssse Po 1
CHAPTER 2 : INSTALLATION eesesnsecsessccesccsssccsascs Pa 2
2.1 Equipments needed by the COMX DOS
2.2 1Installation
2.3 Usages of the equipments
2.3.1 Dual disk drives
2.3.2 Power supply
COMX DOS MANUAL 2.3.3 Disk drive & diskette handling
2.3.4 Care of the COMX disk drive & diskette
CHAPTER 3 : DOS S?RUCTURE cesecscscsnsscsssvessscsssss P. 6
VERSION 1.3 3.1 Volume table of contents
3.2 The disk directory
3.2.1 Directory map format
3.2.2 Directory entry format
3.2.3 File attribute
3.2.4 File type
3.3 File descriptor Format
3.3.1 Drive information
3.3.2 File buffer status

-

BY : TSANG CHING SHUEN 3.4 System parameter 1

CHARLES WONG 3.5 System parameter 2
DATE : MARCH 28, 1985 CHAPTER 4 : FILE STRUCTURE - S § |
COMX WORLD OPERATIONS LTD ;
R & D DEPARTMENT . 4.1 File structure

APPROVED BY : EDMOND LEUNG 4.1.1 Directory entry number

4.1.2 File name -

4.1.3 File attribute

4.1.4 File type 5.9.7 GETWR in random access text files

4.1.5 Record length 5.9.8 Read files
4.1.6 First physical block number 5.9.9 RDALT
4.1.7 File size 5.9.1¢ PUTRD & GETRD in random access files
4.1.8 File starting address 5.9.11 Appending files
CHAPTER 6 : UTILITIES cecesncsscssecncsccensssscsssses Po. 34

4.2 Text file
6.1 The Utilities
4.3 Sequential and random access text file
6.2 "BOOT"
4.3.1 Sequential files
6.3 Using the INIT program to format a new disk
4.3.2 Random access text files
6.3.1 Operation procedure
4.3.3 Create and retrieve information

from two kinds of file 6.3.2 Verification
CHAPTER 5 : DOS COMMANDS “scoesececoaancscsneraaseances P. 18 6.4 Using the DEMO program
5.1 DOS CAT 6.5 Software write protect - LOCK and UNLOCK
5.2 DOS SAVE 6.5.1 Lock files
5.3 DOS LOAD 6.5.2 Unlock files
5.4 DOS RUN 6.6 Copy files
5.5 DOS DEL 6.7 Using the HELP program to find the meanings

of the error codes
5.6 DOS URUN

6.7.1 Operation procedure
5.7 DOS REN

6.7.2 Examples
5.8 DOS NEW

5.9 Text file commands

6.8.1 Operation procedure
5.9.1 Creating a text file

6.8.2 Examples
5.9.2 Closing the file

6.9 A general note for utilities
5.9.3 Opening a file
CHAPTER 7 : HOW TO USE THE "HANDLER" TO CALL THE SUBROUTINES
5.9.4 Writing a file IN DOS cececccossacesasescecesacceceoonaees pP. 43

5.9.5 WRALT : 7.1 Introduction

5.9.6 PUTWR in random access text files 7.2 Command code listing -

7.3 Structure of handler block

7.4 Examples

APPENDIX :

SUMMARY OF DOS COMMANDS
ERROR MESSAGE
DISKETTE STRUCTURE
CALLING THE DRIVER
THE BOOTSTRAP PROCEDURE

CIRCUIT OF DISK CONTROLLER CARD

M A T T T N

.e
nnt--loo--o.-.;o'--o.--ooon---.--.o--

-
---o..---.--.---.c--.-;-..o..--nc

-----...-o..-..c--o..-.---.-.n-.--

A A A R I T

PPeccscccecoccessen00 e

49
51
53
54
56

57

Chapter 1

INTRODUCTION

The COMX DOS is a Disk Operating System for utilizing the COMX
computers. It is well-suited for a wide range of applications on
the COMX computers of almost any size or complexity. Its main
features are :

1. Automatically keep track of files,

2. Save and retrieve information.

3. Do a multitude of housekeeping tasks.

4. Utilizes 5-1/4 inch, high-density floppy disk drivers.

5. Can use different types of disk drive, including single side
and single track density, double side and single track density,

single side and double track density.

6. Provide a maximum of 138 kilobytes of on-line mass memory
storage.

7. Can be accessed in high speed that reduce the time of loading
and saving of files to a few seconds.

This manual is intended to provide the information necessary to
install, maintain, and write BASIC language software with the
COMX DOS. It also describes in detail the software features,
commands and the structures of the system. It assumes that the
reader is already familiar with the COMX BASIC language.

Page 1

P

Chapter 2

INSTALLATION

Equipments needed for the COMX DOS :

2.1.1

a COMX computer

a television set or a monitor
a COMX disk drive

a COMX disk controller card

a system master disk

Installation :

2.2.1

Without the Expansion Box of COMX

1. Turn off the power switch at the back of the
COMX.

2. Plug the disk controller card into the COMX
expansion slot which is on the right hand side of the
COMX.

3. Turn on the COMX.

4. Turn on the power supply of the disk drive.

5. Put the master disk into the disk drive.

6. Type "DOS CAT", there will be a system message and
a catalog of files shown on the screen .

With the Expansion Box of COMX

1. Turn off the power switch at the back of the
COMX .

2. Plug the Expansion Box into COMX expansion slot
which is on the right hand side of the COMX.

3. Plug the disk controller card in any slot of the
Expansion Box.

Page 2

4. Turn on the COMX.

5. Turn on the power supply of the disk drive.

6. Put the master disk into the disk drive.

7. Type "DOS CAT", there will be a system message and

a catalog

of files shown on the screen.

Note : Remember to turn off the power switch at the back of the

COMX before inserting
prevent any damage to
removal or insertion
both the card and the

or removing the card. This is important to
the hardware. If the power is on, the
of any card could cause permanent damage to
COMX.

Page 3

2.3

Using the equipment correctly :

2.3.1

Dual Disk Drives :

The COMX disk controller card can support dual disk
drives. The installation of dual disk drives is the
same as a single disk drive. Since the system
bootstrap process is default on drive 1, a diskette
with the bootstrap program must be put into drive 1
no matter which drive you want to access first.

Power supply :

There are two LED on the controller card for
indicating the status of the disk drive. If using
with the Expansion Box, the lower LED will not be on
before you access the disk drive. If there is no
Expansion Box, the lower LED will be on after the
power supply is turned on. When the disk drive is
accessing, the upper LED will be on too.

Disk Drive and Diskette Handl ing

The COMX DISK DRIVE is a mechanical device, with
motors and moving parts, It is somewhat more
delicate than the computer, so handle it with care.
Rough handl ing, such as dropping the drive, can cause
it to mal fuction,

The diskettes used by COMX DOS are single-density,
single/double sided type or double density, single
sided type. A diskette can store over 138,000 bytes.
Each diskette is a small plastic magnetic coated
medium so that information may be stored on and
erased from its surface. The coating is similar to
the magnetic coating on recording tape. The diskette
is permanently sealed in a square black plastic
jacket which protects it, helps keep it <clean and
allows it to spin freely,

To assure trouble-free reading and writing files, the
diskettes must be handled and stored with care. To
avoid damage to the recording surface and to prevent
diskette deformation, the following precautions
should be carefully observed.

l. Close the disk guard cover when not in use,

Page 4

2. Never let anything touch the brown or gray
surface of the diskette itself. Handle the diskette
by the black plastic cover only.

3. Do not clean the recording surface.

4. Do not bend the diskette or deform it with paper
clips or other similiar mechanical devices.

5. To write on a diskette label, use a felt tip pen.
Do not press hard. It is best not to write on a
label attached to a diskette, but to write on the
separate label, then attach it to the diskette.

The operating and storage environment must be
compatible with the materials of the diskette. The
environment of the diskette should meet the following
criteria :

1. No noticeable dirt, dust, or chemical fumes in
the immediate area.

2. Temperature between 5¢ F (18 C) & 115 F (45 C).
3. Relative humidity between 8 and 8¢ percent.
4. Maximum wet-bulb temperature of 85 F (36 C).

5. No direct sunlight on diskette surface for
prolonged periods.

6. No nearby magnetic fields. This means that we
should keep them away from electric motors and
magnets; they should not be placed on top of

electronic devices such as television sets.
Care of the COMX DISK DRIVE and diskette :

Each diskette is a small coated plastic so that
information may be stored on and erased from its
surface. The coating is similar to the magnetic
coating on recording tape. The diskette is permantly
sealed in a square black plastic cover which protects
it, helps keep it clean and allows it to spin freely.
While the diskette are somewhat flexible, actual
bending of the diskette can damage it.

Page 5

Chapter 3

DOS STRUCTURE

Volume Table of Contents

Sector $@ of track $8 contains the diskette's

Vol ume Table

of Contents, or VTOC. The VTOC stores the following
information :
3.1.1 Volume Table of Contents (VTOC)
Track $8, Sector $¢
Byte (Hex) Description
g-7 Vol ume name
8-F Volume date
10 Total no. of
directory entries
11 Total no. of free
bl ooks used
12 Single or double
track density
13 Single or double side
14-59 Block map
5A~69 Directory map
3.1.2 Volume Extension
Track $0, Sector $1
Byte (Hex) Description
g-45 Block map extension

The Disk Directory .

The disk directory information is stored on track § sector 2

to 14,

each contains 4 directory entries.

Page 6

Directory Map Format

The following director
the directory entries in
byte maps to one sector

Example :

Byte Value (Bin) $5A-$69

y map indicates the number of
each sector of track #. One
correspondingly.

Description

080080000 No directory entries
96000001 Contains 1

directory entry
90001111 All 4

directory entries

fully use

Directory Entry Format (size : 32 bytes)

Byte (Hex)

17
18-1A
1B-1C

File Attribute

206000l
60000010

File Type

Byte vValue (Bin)

geeeeeol
P0e06010
g0000100
06001000
00010000

80100000

Description

Directory entry number

File name

File attribute

File Type

Record length (@ if no
fixed length)

First physical block number
File size

File starting

address (default 44¢9)

Description

File write protected
File delete protected

Description

Basic program file
Assembler program file
Text file

Binary file

Assembler and Basic
program file

Forth program file

Page 7

(€]

File Descriptor Format (size : 42)

Byte

Start from SBC@Q

(Hex)

Drive Informatio
Bit 4 is

Byte Value (Bin)

00210100
20611000
00010000
901100069

File Buffer Stat

Byte Value (Bin)

90000001
0000600610

Description

User return file number

Drive information

Directory entry number

File name

File attribute

File type

Record length

First block number

Current read logical byte address
Current write logical byte address
Current read physical block & sector
number

Current write physical block & sector
number

File size

File buffer location

Starting address (high byte only)

n
always on

Description

Drive @ is used
Drive 1 is used
Side 1 is used
Side 2 is used

us

Description

Sector in buffer
Sector modified

Page 8

System Parameter 1
Start from SBES@

Byte (Hex)

Description

System registers save location
Current descriptor number

Number of descriptors

created {(maximum 6)

End of file

$ABCDEF for has found step rate
Language which call the DOS

¢ for Basic, 1 for Assembler

Read status

g for read, 1 for read alternate,

2 for read record

First dimension value (1 dimensional)
Second dimension value

(2 dimensional)

First dimension value (for user peek)
Second dimension value (for

user peek)}

File buffer status

Current drive number used

Boot flag

External DOS flag, SABCDEF means

use of external RAM

External DOS entry point

Store up the stack location

No of external jump table entries
Store up the status after R/W sector

Page 9

.5

System Parameter 2
Start from $SBFO0G

Byte (Hex)

3.5,1 Boot Test

Byte value (hex)

789ABC

123456

Description

Number of directory entries used in
drive 1

Number of blocks occupied in drive 1
Single or double track density

of drive 1

Single or double side of drive 1
Boot test of drive 1

Driver on or of after used

(default on)

Logical error number

Number of directory entries used in
drive 2

Number of blocks occupied in drive 2
Single or double track density

of drive 2

Single or double side of drive 2
Boot test of drive 2

String's a name and array

number pointed

by file description pointer.

Description

Disk has been

initialised, but not
booted
Disk has been

both booted and
initialised

Page 140

Chapter 4

FILE STRUCTURE

File Structure

In our COMX Disk Operating System, information is recorded
on a diskette with 16 sectors per track. And 128 data bytes
is stored in each sector. Details of the disk structure are
found in the appendix.

All files information are stored from sector 2 to sector 14
of track #. There are in total 13 sectors. Each file
requires 32 bytes to hold their information, so one sector
holds four files and a maximum of 52 files can be created.
It can be summarized that track @ is used by the system, and
it has the following usage :

Area Usage

Volume table and block map
Block map extension
Directory entry format

The handler

Track @, sector @

Track @, sector 1

Track @, sector 2 to 14
Track @, sector 15

Starting from track 2, real content of the files are stored.
The directory entry format is discussed below.

In the previous paragraph, each file needs 32 bytes to hold
their information. Each byte has it's special usage as
listed

Byte Number Usage
1 Directory entry number
2 - 20 File name (19 character)
21 File attribute
22 File type .
23 Fixed record length
24 . First physical block number
25 - 27 File size
28 - 29 File starting address
3¢ - 32 No use

Page 11

4.1.1

Directory Entry Number

These _are the numbers given to each file as their
order in the disk which ranged from 1 to 52 in an
ascending order. These numbers can be seen in the
left most column in the catalog,

File Name

The'filename of the files are stored in this area, a
maximum number of 18 characters can be used,

File Attribute

This marks the software write protective status of
each file :

%00000001 write protect
$00000010 delete protect
$00000011 both

They are found in the rightmost column of the
catalog :

D ~ delete protect
W ~ write protect
D,W - delete and write protect

File Type

Our DOS can provide storage for six types of files,
details of which will be discussed 1later. Firstly,
how to distinguish them from each other in the
Directory entry format will be described.

00000001 basic file (BAS)
00000010 assembler file (ASM)
$00000100 text file (TEX)
00001000 binary file (BIN)
300010000 assembler and basic file (A&B)
200100000 forth file (FTH)
Their abbreviations -~ as in the brackets, can be

looked up under the column title 'TYpg' of the
catalog.

Page 12

Record length

This specifies the fixed record length if it is a
random access text file. If it is not a text file or
just a sequential text file, a zero will be filled in
this byte. However, it cannot be seen 1in the
catalog.

First Physical Block Number

The first track number and sector number storing the
file can be calculated from this information (Note :
one block consists of eight sectors. There are two
blocks in one track.)

File size

Three bytes are occupied to store the size of the
file. They are in byte-count instead of block-count.
After changing to decimal and rounding up to the
nearest kilobyte, they are retrieved under the
heading 'SIZE' of the catalog.

Note : During the changing procedure, the bytes will
be rounded up to get an integer result. For example,
file size ranging from @ to 10624 will be rounded up
to 1K bytes.

File Starting Address

Two bytes are occupied for storing this address - the
high byte and the 1low byte. The default value is
$4400 for basic file, basic & assembly file, and
forth file. The value is user defined in assembly
and binary. On the other hand, there is no starting
address for text file since it is not a program
itself, only data and information are stored.

Page 13

Text File 4.3 Sequential and Random Access Text Files

Text files are seperated into sequential and random access
type. Both types of text files store strings of ASCII codes
to represent data, but in different formats. The file
consists of data or strings seperated by RETURNS. The
RETURN 1is sent at the end of every string variable. Note
that it is a character rather than an action that it usually
represents, its ASCII code is OD in hexidecimal.

Sometimes floppy disks are used to store information that is
not a program . For example, a telephone directory, a price
list, or a mailing list. A text file, sometimes called a
date file allows the user to do this and more. The word
"TEX" will appear in the column "Type" of the catalog if
that is a text file.

The DOS commands 1like LOAD, SAVE, and RUN may not be used
with text files. An attempt to do this will cause a SYSTEM
CRASH. It is because the above commands are assumed to deal
with other files which will be discussed later, Text files
have no starting and ending addresses, treating them as a The
program causes the computer mal function.

Each item of data, ending with its RETURN character, is
called a field. A field is stored in the text file as a
series of characters represented by their ASCII codes.

concepts of the two types of text files will be
‘discussed below and their usage, format and examples will be

Date and information are read from and write to a text file shown in the next chapter.

by means of several DOS command, they will be discussed in 4.3.1

the next chapter : Sequential Files

A rough diagram of sequential file is shown below,

ggggTE the symbol ' represents the RETURN character.
READ

E .
QS;ET CHARACTER T H I § ! I S ''C O M X ! 3 5 '
WRALT ASCII 54 48 49 53 @D 49 53 ¢D 43 4F 4D 58 @D 33 35 @D
BUTRD FILE BYTE @ 1 2 3 4! 5 6 7! 8 9 1¢ 11 12!13 14 15!

FIELD @ ! 1 1 2 i 3 !

PURWR
APPF
CLOSE From the above diagram, it is shown that each field

. , is stored immediately after the RETURN character of
Unllke‘ other pOSs,.COMX DOS cgmmands for text files can be the preceding fielg When stored on the diskette,
used in the immediate-execution mode, they need not these fields may be of different lengths (the word

necesarily be executed within a program. THIS takes 5 bytes including the RETURN.) A

sequential text file is stored on the diskette as one
continuous series of ASCII-coded characters, i.e. a
chain of fields with no gaps left between them.

Furthermore, other DOS commands :

DEL
REN
CAT

and our utilities :

copy
LOCK
UNLOCK

Work with the text files in the same way as other program
files. Our utility, MERGE, works only on text files.

P 1
Page 14 age 15

Random Access Text Files

The following diagram shows how the structure of
random access file with a fixed record length of 5
deals with its data,

CHARACTER T H I § I s C 0 M X 3

ASSCI

FIELD

1

5
54 48 49 53 00 49 53 @0 60 00 43 4F 4D 58 8¢ 33 35 00 00 00
FILE BYTE ¢ 1 2 3 41!5 6 7 8 9 119 11 12 13 14!15 16 17 18 19
!

g ! 1 ! 2 ! 3

Each random access file, when created, must be given
a fixed record length. This record length decides
the length of data.

As in the above diagram, each record equally
contained 5 bytes no matter they are empty or not.

Unlike sequential files, the records in a random-
access file are of specified FIXED LENGTH. (Every
time the user write data to it, a fixed defined space
is set aside on the diskette for a complete, standard
length record, whether or not the record is all
filled with ASCII codes.) Also, there is no need for
random access files to have $@d to seperate records
in between. Random access files is not an efficient
way to use the diskette spaces. However, since these
files are set up in such a regular fashion, it is
fast and easy to retrieve or modify information from
any part of the file. Random access files should be
used to deal with data that require a fast access or
with data that are updated fairly often.

Create and Retrieve Information from Two Kinds of
Files

Ramdom-access files are created and retrieved in a
manner very much similar to that of sequential files.
The main difference is that certain commands require
additional parameters : CREATE requires R(x) at the
end where x represents the fixed record length, while
commands PUTRD and PUTWR in use with the random
access files determine the pointers to reach the
desired record by these fixed record length.

Formats and sample programs will be presented and
discussed in details in. the following chapter of THE
USAGE OF THE DOS COMMANDS.

Page 16

Note 1 : In general, £fixed record length do not
apply to numeric arrays. Text files that bear ONLY
numeric arrays are all default to be random access
files of a fixed record length of FOUR. It is
because every numeric variable needs four byges to
hold them (see diagram below). When creatlng‘ a
random access file that is used to hold both string
varible and numeric variable, fixed the record length
GREATER THAN OR EQUAL TO FOUR. Writing a recorq of
ten characters into a random access file with a fixed
record length of eight will <cause the 1last two
characters to be CUT AWAY.

The following diagram is to show the structure of a

text file which stores numeric variables of 1,2 & 3.
It is a random access file with a fixed record length

of 4.

record 1 ! record 2 ! record 3 !

Note 2 : Numeric array - only carries numeric
numbers. e.g 1,2,3,4.

String array - carries al phanumeric
character e.g. A,B,Al,Z8.

Page 17

Chapter 5

DOS COMMAND

This chapter describes in details each system command available
on the COMX DOS. For ease of use, the system command
descriptions are given in a standard format which includes the
command name, its purpose, its format, its action, and examples.

In the description for each command, the square brackets [and]
indicate optional input. The diskette is assumed to be in drive
l, so that the command names do not have to be followed by
specific drive numbers.
5.1 DOS CAT

(A) Purpose :

Display on the screen the number of free blocks, the disk

name and the creation date. A list of all files on the disk

presented next.

(B) Format :

DOS CAT [/DR]

When each file is displayed, an abbreviation of its file

type and the number of blocks used are shown for each file,
These file types are :

BAS BASIC program file

ASM Assembler program file

A&B Assembler and BASIC program file
FTH Forth program file

BIN Binary file

TEX Text file

If the file 1is protected, it will be displayed with an
indicator of its protecton type. The protection types are :

W Write protected, the file cannot be written
over.
D Delete protected, the file cannot be deleted.
Page 18

(C) Example :
Put the master disk into drive 1 and type "DOS CAT"
DOS CAT

A list of information on the disk will be shown on the
screen

DISK NAME : MASTER #5-11-84

FREE BLOCK : 999 DBL SIDES
FILE NAME TYPE SIZE
g1 : BOOT ASM @91 D,W
g2 : INIT ASM @@2 D,W
83 : DEMO BAS 626 D,W
¥4 : LOCK ASM @¢1 D,W
g5 : UNLOCK ASM @g1 D,W
#6 : COPY) ASM 401 D,W
@7 : HELP ASM @02 D,W
#8 : MERGE ASM 945 D,W
DOS SAVE

(A) Purpose :

If there is no such file by the file name specified on the
diskette in the specified or default drive, a file will be
created on that diskette and the current BASIC program will
be stored under the given file name if no other option after
the file name other than the drive number is chosen.

(B) Format :
DOS SAVE,<"™ F.N. "> [,F] [,@SADR] [,@EADR] [,B] [/DR]
If the chosen disk already contains a file with the

specified file name, the DOS will allow you overwriting it
depending on your answer to "“Y" or "N".

- Page 19

(C) Examples :
To save a BASIC program :
Format : DOS SAVE,<" F.N. "> [/DR]
Example : DOS SAVE, "NEW PROGRAM"
To save an assembler program :
Format : DOS SAVE,<" F.N. ">,@SADR,@EADR [/DR]
Where SADR and EADR are the program starting &
ending address respectively.
Example : DOS SAVE,<"GAME">,@4400,Q@608¢
To save a FORTH program :
Format : DOS SAVE,<" F.N. ">,F [/DR]
Example : DOS SAVE,"SCREEN i",F
To save programs written in assembler and BASIC.
Format : DOS SAVE,<" F.N. *>,@SADR [/DR]
Where SADR is the starting address of the
assembler program,
Example : DOS SAVE,"SOURCE",@580¢
Note : The starting address for the assembler program must
be smaller than that for the BASIC program.
Save a binary file :
Format : DOS SAVE,<" F.N. ">,@SADR,@EADR,B [/DR]
Where SADR 1is the starting address of the
program, and EADR is the ending address of the

program,

Example : DOS SAVE,"FILE.OBJ“,@S@GQ,@9GGQ,B

Page 20

5.3

-

DOS LOAD
(A) Purpose :

Load the program file with the specified name on the disk in
the specified or default drive.

({B) Format :

DOS LOAD,<" D.N. "> [/DR]
NOTE : DON'T USE THIS COMMAND ON TEXT FILES.
(C) Example :

DOS LOAD,"DEMO"

DOS RUN

(n) Purpose :

Load the BASIC program file with the specified name on the
disk in the specified or defaul t drive, then run the 1loaded
program. "DOS RUN" can also be used to execute programs but
it will only run the BASIC part of that program.

(B) Format :

DOS RUN,<" F.N. ">

(C) Example :

DOS RUN,"COMX"
DOS DEL
(A) Purpose :

Removes the file with the specified name if the file is not
delete protected.

(B) Format :
DOS DEL,<"™ F.N. "> [/DR]
(C) Example :

DOS DEL,"COPY"
Page 21

A SCENARIO

: DOS CAT, DOS SAVE, DOS LOAD,DOS RUN,AND DOS DEL

The following is a table as it might appear on the screen of

your COMX. Suppose the system master disk is

drive 1. Types in DOS CAT.
:DOS CAT
DISK NAME ¢ MASTER #5-11~-84
FREE BLOCK : @99 DBL SIDES
FILE NAME TYPE SIZE
g1 : BOOT ASM 231 D,W
g2 : INIT ASM ga2 D,W
@3 : DEMO BAS 326 D,W
g4 : LOCK ASM ge1 D,W
g5 : UNLOCK ASM 2e1 D,W
g6 : COPY ASM @81 D,W
@7 : HELP ASM g@2 D,W
g8 : MERGE ASM 285 D,W
:NEW (Erases the program in memory)
:19 FOR 1=1 TO 14
228 PRINT I,
:3@ NEXT I
:DOS SAVE,"TEST"
"TEST')

:DOS CAT

DISK NAME : MASTER #5~11-84

FREE BLOCK : @98 DBL SIDES
FILE NAME TYPE SIZE
g1 : BOOT asM @41 D,W
@2 : INIT ASM 202 D,W
g3 : DEMO BAS 226 D,W
g4 : LOCK ASM ga1 D,W
@5 : UNLOCK ASM 201 D,W
g6 : Copy ASM 261 D,W
#7 : HELP ASM ég2 D,W
g8 : MERGE ASM aes D,W
@9 : TEST BAS ge1 D,W
(The file 'TEST® is in the directory)

your disk

(Save the program and give it a name

Page 22

:NEW (Erases the program in memory)

:DOS LOAD,"TEST" (Load the program called 'TEST' to the
memory)

tLIST

12 FOR 1=1 TO 1@
20 PRINT I,

30 NEXT I
:NEW
:DOS RUN,"TEST"
1 2 3 4 5
6 7 8 9 18
:DOS DEL,"TEST"
:DOS CAT
DISK NAME : MASTER #5-11-84
FREE BLOCK : @99 DEL SIDES
FILE NAME TYPE SIZE
@1 : BOOT ASM @01 D,w
@2 : INIT ASM @02 D,W
#3 : DEMO BAS @26 D,W
64 : LOCK ASM @61 D,W
@5 : UNLOCK ASM @81 D,W
86 : COPY ASM @01 D,W
@7 : HELP ASM 962 D,W
@8 : MERGE ASM 005 D,W
DOS URUN

(A) Purpose :
Load the ASSEMBLER program file with the specified name on
the disk in the specified or default drive, then run the
loaded program.
(B) Format :

DOS URUN,<"F.N.">

(C) Example : DOS URUN,"INIT"

Page 23

DOS REN
(A) Purpose :

Finds the specified file name on the disk and changes its
name. The file's contents will not be affected.

(B) Format :
DOS REN,<"™ OLD F.N. ">,<" NEW F.N. "> [/DR]
(C) Example :

DOS REN,"DEMO","DEMONSTRATION"

DOS NEW
(A) Purpose :
This command is used for initialising the disk system. It
is wused whenever a file is being opened after the system
reset. We also have to use DOS NEW to re-init the DOS
system if there 1is an error message after using commands
DOS RUN, DOS SAVE, or DOS LOAD.
(B) Format :

DOS NEW
(C) Example :

DOS NEW

Text File Commands
5.9.1 (A) Creating a text file

A text file needs to be created to manage records,
data, and information.

(B) Format : Dos create,*wn,"filename"[,/R(x)] [/2]

~ Work number (wn) is used to identify the text file,
operations on files like read, write and close depend
on the work number given. Six text files can be
created at the same time (work number 1-6). So,
inconvenience of typing the filename each time 1is

avoided.
Page 24

The option [/2] is used if the text file 1is created
on drive 2 of the dual drive. This option is not
applicable to a single~-drive user. The option
[,/R(x)] 1is used for random-access files, where x is
the fixed record length. It needs to be specified
only in the DOS CREATE command. Re-opening of the
files do not require such a command.

The command CREATE also do the Jjob of OPEN (which
will be discussed later), so CREATE actually create
the text file and open it.

(C) Example : To create two text files,
one sequential file named COMX on
drive 1, one random-access file named
COMX 35 with fixed record length of
3 on drive 2.

Format : Dos create,*1,"COMX"
Dos create,*2,"COMX 35",/R(3)/2

Note : Access of these two files
are identified by their work number.
ie. 1 for COMX and 2 for COMX 35.

Closing the file

Every text file have to be closed after accessing.
No data can read from and write to a text file before
opening and after closing. As mentioned earlier, you
should CLOSE the file with it's work number.

Format : DOS CLOSE,*wn

Example : To close the two files created
above.

Format : DOS CLOSE,*1
DOS CLOSE,*2

Note : Files opened must be closed afterward.

Failure to CLOSE a file that was opened and written
to by a write command may result in loss of data.

Page 25

5.9.3

(iii) Opening a file

(A) Text files have to be opened before anything can
be written to or read from it. Open the file with a
work number (between 1 to 6). It does not need to be
the same work number as in creation.

(B) Format : DOS OPEN,*wn,"FILENAME"[/2]

The object file must exist in the directory. Use
CREATE if it is a new file, The OPEN set aside a
buffer in the memory to handle the file's input and
output, the system is also ready to read and write
from the BEGINNING of the file. On the other hand,
CLOSE released the file's buffer,

() Example : To open the two files

Format : DOS OPEN,*1,"COMX"
DOS OPEN,*2,"COMX 35"/2

Writing a Files

(Aa) Record and data can only be written into a text
file instead of saving it as other files do. Before
writing a file, it must be opened. The file also has
to be «closed after it has been accessed. You must
use the same work numbers for WRITE and CLOSE as the
ones used during OPEN,

(B) Format : DOS WRITE,*wn,AS$(x),BS(x,y),C(x),
D(X,¥).c..

Records have to be written into the text files in the
form of arrmys, no matter it is a string array or a

variable array (numeric array) . A maximum of 8
arrays can be written at the same WRITE command, and
the size of each array depends on user memory. The

usage of single-dimensional or two-dimesional arrays
is the same. For example,; two-dimensional array of
AS(2,255) write the same size as two single
dimensional array of A$ (255) and BS$(255). -The x and
y value can be a number or a variable.

Page 26

For random-access files, there is no need <to
specified it's fixed record length again. After
opening a text file which is random-access file type,
records being written into that file will have a
fixed length.

Note : If you write a string “WWWWW" into a
random-access file with a fixed record length of 3;
only "WWW" can actually be written into the file.

Caution : Don't write an empty array ! If AS(l)
have not been defined and it is written into the text
file, it may damage the file, or even the diskette.
If the COMX computers is carelessly reset during
WRITING, the array(s) of the WRITE command will be
destroyed and part of the array(s) will be written
into the file. .

The following is an example in the BASIC language to
demonstrate WRITE files. The purpose 1is to manage
five person's NAME, AGE, and JOB using a sequential
file,

(C) Example :

10 REM ** DEMO PROGRAM **

15 DIM B(5)

20 FOR I = 1 TO 5

36 INPUT "NAME "AS(I)

40 INPUT "AGE "BS$(I)

5¢ INPUT "JOB "CS(I)

60 NEXT I

78 DOS CREATE,*,"DEMO"

86 DOS WRITE,*1,AS$(5),B(5),CS(5)
9¢ DOS CLOSE,*1

line 208 to 66 get the data

line 78 creates the file named “DEMO"
line 88 writes the records into the file
line 90 closes the file

PAGE 27

WRALT

(A) WRALT (WRITE ALTERNATE) is one of the DOS
command similar to WRITE. The format of them is
exactly the same.

(B) Format : DOS WRALT,*l,AS(x),Bs(y)...o

Write alternate means write the arrays into the
text file alternately. Write the first record in the
first array, then the first record in the second
array and so on, Until all the first record of each
array are written, the second ones will be handled in
the same manner. If the WRITE command is used
instead of WRALT as in the example above, all five
records of the A$ have to be written into the file
before dealing with the second array.

Note i The value of x should be the same as y
while using WRALT.

Caution : In using WRALT, the system only takes
the array size of the first into account, ie. the
value of x. For example, if x=4 and y=5, only four
strings in a$ and four string in BS will be written
al ternately into the text file. If x=5 and y=4, five
strings will be written into the file, the extra
string of the B$(5) can be anything, so the file may
be damaged.

The advantage of using WRALT can be illustrated by
changing the WRITE command of the example above to
WRALT.

(C) Example :

18 REM ** DEMQ **

15 DIM B(5)

26 FORI =1 T0 5

30 INPUT “NAME"AS (I)

46 INPUT "AGE"B(I)

50 INPUT "JOB"CS$(I)

60 NEXT I

70 DOS CREATE,*1,"DEMO"

8¢ DOS WRALT,*1,A$(5),B(5),C$(5)
9¢ DOS CLOSE,*1

Page 28

It this example, five groups of data are stored in
the text file. Each pair of data will inclgde the
names, and then the ages, and also his job as in the
following format.

NAME (1) AGE (1) JOoB (1)
NAME (2) AGE (2) JOB (2)
NAME (3) AGE (3) JOB (3)
NAME (4) AGE (4) JOB (4)
NAME (5) AGE (5) JOB (5)

The records will be in this format by using WRITE
instead.

NAME (1) NAME (2) NAME (3) NAME (4) NAME (5)
AGE (1) AGE(2) AGE (3) AGE (4) AGE (5)
JOB (1) JOB(2) JOB(3) JOB (4) JOB(5)

PUTWR in Random Access Text Files

(A) The PUTWR (put write) command is used with
random access files only. In random access file,
every record has a fixed length. Thg position of
every record in the file can be easily calculated.
To set the write pointer, the desired record
location has to be put in the write pointer.

Note : Read/Write pointer - system poin?ers which
point to specific areas in the fxles: The
READ/WRITE command will follow these pointers;

access and perform the read/write process.
(B) Format : DOS PUTWR,P

P is the pointer of the record. The first record
begins at zero. If the file has a fixe@ record
length of 5, the pointer of the first record is g the
tenth record of the file will be 50.

(C) Example :

10 REM ** DEMO OF PUTWR **

20 FOR' I = 1 TO 18

30 READ AS(I)

40 NEXT

58 DOS CREATE,*1,"DEMO",/R(9)

60 DOS WRITE,*1,AS (19)

7¢ DOS CLOSE,*1

80 DATA "MARISA","PETER","THOMAS","COLLIN"

85 DATA "GORDON","EDWARD","VERONICA™,"CHARLES"
99 DATA "DONNY","MCENROE"

Page 29

After the above program has been executed, there
are ten names in the file with a fixed record
length of nine, although their actual length is not
the same. For example, to update THOMAS to CONNORS,
the position of THOMAS in the file has to be
calculated. And the value is then put into the write
pointer and replaced with CONNORS. The following
shows this operation,

Example :

10 REM ** UPDATE **
20 DOS OPEN,*1,"DEMO"
3¢ pP=2%*9

40 DOS PUTWR,P

5¢ S$(1)="CONNORS"

60 DOS WRITE,*1,SS(1)
76 DOS CLOSE,*1

Line 3¢ does the calculation, THOMAS is placed at
number 3, there are two records before it. So
its pointer is @+9+9, getting the sum of 18.

The following illustration will clarify this point :

CHARACTERS MARISA PETER THOMAS COLLIN GORDON
- 1~ B 1- -

R/W POINTERS [} 9 18 27 36
Note : After "CONNORS" has been written into the
file, the write pointer points to the record after
it. (i.e. COLLIN) So, in order to make changes
on other names afterwards, it is not necessary
to calculate the pointer from the beginning. Only
DOS CLOSE will set all pointers to zero. The
PUTRD command do the similar job which will be
explained afterwards.

5.9.7 GETWR in Random Access Text Files

(A) This command (get write) is sel f-explanatory.
The write pointer will match the current record as
they are being written into the file. For

example, if there are already seven records in the
file with a fixed record length of 8, the write
pointer will be set to 56.

(B) Format : DOS GETWR,*WN,P

Similar to PUTWR, this command will put the result
into the variable. It can be retrieved by BASIC
command PRINT P.

Note : the variable P used in PUTRW and GETWR is

just an example. Any other variable name will
do.

Page 30

READ FILES

(a) The DOS command READ allows the user to
retrieve the record in the text files. Like WRITE,
must as well be preceded by OPEN CLOSE after being
used. READ the files by the work number given by the
OPEN command.

(B) Format : DOS READ *wn AS(x),
BS(X,y),C(x),D(X,¥)seacn

Same as the procedure of the WRITE. command,
records have to be read into the memory in the form
of arrays.

(C)” Example : To retrieve the text file - DEMO with
ten names created in the above
example. -

12 REM DEMO PROGRAM
2¢ DOS OPEN,*1,"DEMO"
38 DOS READ,*1,¥$(10)
48 DOS CLOSE,*1

56 FOR H =1 TO 190

60 PRINT ¥YS (H)

780 NEXT H

8¢ END

After this example is run, the
following result will appear.

MARISA
PETER
CONNORS
COLLIN
GORDON
EDWARD
VERONICA
CHARLES
DONNY

° MCENROE

NOTE 1 : The string name is user
defined. If the record 1is written
into the file by the command
'DOS WRITE,*1,RS$S(10)°'. It is not
necessary to retrieve the record by
RS, the wuser can use any other
string names like ¥Y$ in the above
example,

Page 31

5.9.9

5.9.10

NOTE 2 : A variable record, 1like
D(1¢), is not necessary to do the
dimension declaration : DIM D(18) in

BASIC. THE DOS COMMAND READ AND
RDALT WILL DO ALL DIMENSION FOR
THE USER.

RDALT

RDALT (read alternate) is a DOS command used in
pair with WRALT.

(B) Format : DOS RDALT,*wn,AS(10),BS(10)
Similarly RDALT read the first record of all
arrays before the second ones,

(C) Example : To retrieve the information by the
command RDALT.

1¢ DOS OPEN,*1,"DEMO"

20 DOS RDALT,*1,AS(5),B(5),CS(5)
30 DOS CLOSE,*1

4¢ FOR I = 1 TO 5

5¢ PRINT AS$(I),B(I),CS(I)

60 NEXT I

The following result will appear :

NAME 1 AGE 1 JOB 1
NAME 2 AGE 2 JOB 2
NAME 3 AGE 3 JOB 3
NAME 4 AGE 4 JOB 4
NAME 5 AGE 5 JOB 5

Caution : Do not use RDALT to read a text file
written by the WRITE command. Also, do not use READ
to retrieve records written by the command WRALT. Use
READ to retrieve records written by WRITE and
RDALT for records written by WRALT.

PUTRD AND GETRD in Random Access Files

(A) PUTRD (put read) and GETRD (get read) are
similar to PUTWR and GETWR. Their nature and
principle are the same except the pointer 1is the
read pointer instead of the write pointer.

(B) Format : DOS PUTRD, *wn, P
DOS GETRD,*wn,P

Page 32

5.9.11

{C) Example : To retrieve only the sixth record of
the "DEMO" example.

1¢ REM DEMO PROGRAM
20 DOS OPEN,*1,"DEMO"
3@ pP=54

4@ DOS PUTRD,*1,P

50 DOS READ,*1,TS(1l)
6¢ DOS CLOSE,*1

7@ PRINT TS$(1)

The answer 'EDWARD' will be printed
out when the above program is executed.

Note : GETRD and GETWR needs a variable to hold
them; but we can directly use a value for command
PUTRD and PUTWR. For example, in line 40 of the
above example, we can use DOS PUTRD, *1,54.

Appending Files

(A) The DOS command APPF (append file) adds text
to the end of a text file. This is particularly
useful to extend the information in a sequential
text file. This command performs an OPEN on a file
that already exists, then sets the read pointer and
write pointer to the byte at the end of file,

(B) Format : DOS APPF,*1,"F.N"[/2]

(C) Example : To add five more names to the file
"demo" created above.

10 REM DEMO

20 FOR I = 1 TO 5

3¢ READ ¥YS(I)

40 NEXT I

5¢ DOS APPF,*1l,"DEMO"

6¢ DOS WRITE,*1,YS$(5)

7¢ DOS CLOSE,*1

8¢ DATA "LENDL","LLOYD","MARTINA"
9¢ DATA "FLEMING","BORG"

The five names will add to the back
of- the file after the program has run.

Page 33

Chapter 6

UTILITIES

The Utilities

Utilities are aids that help the user to deal with the
files. There are eight utilities in the master diskette :

BOOT {contains the handler)

INIT (initializes a new disk)

LOCK (a demonstration of all the DOS commands)
UNLOCK (looks files)

COPY (unlocks files)

HELP (error codes enquiry)

MERGE (merge text files)
BOOT

This contains the handler that is used by both the system
and the user., The use of handler will be fully explained in
the next chapter. This wutility CANNOT be removed,
otherwise, the handler is lost and all the DOS commands will
not work because they are called through the handler.

Using the INIT Program to Format a New Disk
6.3.1 Operation Procedure
1. 1Insert the master disk to drive 1 or driver 2.

2. Type 'DOS URUN,"INIT" [/DR]', the option of DR is
the drive number of the master disk.

3. There will be a message "INSERT FORMAT DISK THEN
PRESS ANY KEY" appears on the screen. Put the new
disk into drive 1 or drive 2 and press any key, the
master may then be taken away from the drive.

4. Now you will see the question "ARE YOU SURE?
(Y/N)" type ™"Y" to continue the program and "N" to
abort it.

5. When you see “DRIVE NO. D(1l OR 2) ?" answer the
drive number by typing "1" or "2",

6. After the message "DOUBLE TRACK DENSITY ? (Y/N)"
type "Y" for double track density (96 TPI) and “N“
for single track density (48 TPI).

7. When you see “SINGLE"(l1) OR DOUBLE(2) SIDE 2"

answer by typing *1" or “2¥. If you have chosen
double track density, this question will not appear.

Page 34

8. The next question will be "ARE YOU SURE ? (Y/N)".
It is the same as the first question, if you type
“N", the program will be aborted.

9. The new diskette will be formatted. After
formatting, you will be asked for the name of the new
diskette : .

"DISK NAME (MAX.8 CHARS) 2"

Type 1in any character for the name of your new
diskette, but the maximum number of the characters is
8.

1¢. The last question will be "DATE (DD-MM-YY) 2"
Enter the date your new diskette 1is created, the
maximum number of characters is 8.

After formatting, the new diskette can be used to
boot up the system and you can find a file call
"BOOT" on the new diskette. Do not delete the "BOOT"
file, otherwise, the diskette cannot be used to boot
up the system,

Example :

:DOS URUN,"INIT"
INSERT FORMAT DISK THEN PRESS ANY KEY

ARE YOU SURE ? (Y/N) [Y]

DRIVER NO. (1 OR 2) 2?2 [2]

DOUBLE TRACK DENSITY ? (Y/N) ([N]
SINGLE(1l) OR DOUBLE(2) SIDE 2 ({2]
ARE YOU SURE 2 (Y/N) (Y]

DISK NAME (MAX.8 CHARS) ? [NEW DISK]
DATE (DD-MM-YY) ? [01-01-85]

The content in square blacket at the end of each
question should be entered by the user.

Verification
There is a verifying program after initialisation.
This routine checks all the tracks and bytes in the

diskette just initial ised.

a) The 'O.K' message indicates that the track is
perfect and ready for use.

Page 35

b) All empty tracks were filled with zeros during
initialisation. Message 'BAD' means certain bytes on
that track 1is not a zero. They will be shown
afterwards. You are suggested to initialise the
diskette once more.

c) The message 'R,W' error indicates that the track
was damaged. There are some difficul ties in reading
gnd writing on that track. An SFF will be filled
into the relative block which means that block is
useless. So, the number of free blocks will decrease
by 1 with one R/W error.

d) SEEK error means the driver cannot find that
track. The result is the same as an R/W error.

Using the DEMO Program
Remove the write protective strap from the diskette and
insert the master diskette into drive 1 or drive 2. Type
DOS RUN,"DEMO" [/DR], the option of DR is the number of
the drive which the master diskette has been inserted.
A? the beginning of the program, a symbol table will be
displayed on the screen. The symbols indicates the format
of each comménd. The menu of the program will be displayed
after pressing the space bar. Then you can choose any of
the options in the menu.
({DOS MENU)
1. FUNDAMENTAL COMMANDS
CAT,SAVE,LOAD,RUN,DEL
2. TEXT FILE COMMANDS
CREATE,OPEN,CLOSE,WHITE,READ
WRALT,RDALT,APPF,GETRD,PUTRD
GETWR, PUTWR
3. OTHER COMMANDS
REN,NEW,URUN
4. SYMBOLS

5. ERROR CODES

Page 36

6. EXIT
WHICH OPTION (l-6) ?
You can choose any of the above numbers.

In the demonstration, characters displayed in white indicate
those characters which are typed in by the user. The cyan
characters represent the computer print out.

This program will be destroyed after running, so if you want
to run the program again after exit, please load it again
from the disk.

Software write Protect - Lock and Unlock

There are two kinds of software protection : delete
protection and write protection. Delete protected means
cannot be removed and it is indicated by the alphabet (D) at
the rightmost column of that file; it is that file cannot be
written over and indicated by (W) at the rightmost column.
Write protection is used to deal with text files only. If a
file is both write and delete protected, a (d,W) will appear
at the rightmost column.

6.5.1 Lock Files

1. Insert the master diskette and type DOS .
URUN, "LOCK®".

2. A question "FILENAME 2" which requires the object
file name will be asked.

3. There are three options : delete protect the file
only; write protect only and both. Just type in the
option number, there is NO NEED to type the return
key.

4., Finally, input the driver number of the object

file. 1 for drive and 2 for drive 2; again there is
no need to type the RETURN key.

Page 37

6.5.1.1 Hardware Write Protect

The LOCK command allows the user to protect
a particular file. To ensure that ALL files
on a certain diskette will not be
overwritten and cause losses, it is
necessary to write protect a diskette by
covering up the squarish write-protect notch
on the side of the disk. Stick-on adhesive
labels are supplied for this purpose on
purchasing diskettes, but anyway, any piece
of sturdy tape will do.

Caution : It is dangerous to repeal the
write-protect 1label of the master disk. If
it is accidentally damaged, the system
cannot be boot up again. It is saver to run
the "DEMO" program by loading it first.
Then substitutes the master diskette by a
working diskette before "DEMO"™ runs.

6.5.2 UNLOCK FILES
The procedure is exactly the same as LOCK but it's
purpose is just the opposite. File has to be UNLOCK
before it can be removed or written.

COPY FILES

COPY is a utility to make copy from an existing file to a

non-existing file. Sometimes it is used to make backup of

important files. All files can be copied.

1. Place the master diskette into the drive and type DOS
URUN, "COPY".

2. Input the source file name and type return.

3. Input the source file's drive number, there is NO NEED
to hit return.

4. Then input the object file name and type return

5. Input the object file's drive number, there is NO NEED
to enter RETURN.,

Note : Single-drive wuser CANNOT copy files from a disk to
another. He cann ONLY copy files within the same disk.

Page 38

6.7

Using the help Program to Find the Meanings of the Error

Codes

6.7.1

Operation Procedure
1. Insert the master diskette to drive 1 or drive 2.

2. Type 'DOS URUN,"HELP" [/DR]', where the option of
DR is the drive number of the master diskette.

3. There will be a message "INPUT ERROR CODE :"
displayed on the screen. Type the error codes that
you want to find.

4, After the error messages are displayed, "INPUT
ERROR CODE:" will appear again, the next error can be
entered. You can abort it by pressing the RETURN
key, then there will be a message "ERROR NOT FOUND"
printed on the screen and the program aborted.

EXAMPLES :

:DOS URUN, "HELP"
INPUT ERROR CODE:[123]
PARENTHESIS MISSING

INPUT ERROR CODE:[101]
RECORD NUMBER EXCEEDS FILE SIZE

INPUT ERROR CODE: (CR)
ERROR NOT FOUND

The contents in the square blackets at the end of
each question are to be entered by the user.

Operation Procedure

MERGE is a utility for text files ONLY. 1It's purpose
is to link up text file sequentially.

1. 1Insert the master disk and ‘type DOS URUN,"MERGE"
2. It will ask for a filename by displaying the
message "DESTINATION FILENAME 2". Destination file
means the object file. 1Input a filename which must
not already exist and press return.

3. Then input the destination file's drive number.

Page 39

4. The message :

INPUT YOUR OBJECT FILE IN SERIES
PRESS CNTL 'S' WHEN FINISHED

FILENAME ?
will be displayed.

Then you can input the object files. Type in the
first file to be merged; press return, then input
it's drive number after the message 'DRIVE NO:‘

5. The merge procedure now begins, 'READING ...°
will be displayed out when the program read the
content of the object file. ‘'WRITING...' will appear
on the screen when the content is being written into
the destination file.

6. After the files have been merged, the message
'FILENAME' will appear again to request the next file

that is going to be merged. Drive number has to be
input also,

7. Procedures 5 and 6 will be perform again and
again. After finished merging all the object files,
press cntl 'S' when 'FILENAME ?' is displayed and the
whole job is done,

Note 1 : For single-drive user, the destination file
and all the object fils MUST be on one diskette.
For dual-drive user, files can be located at either
drive 1 or drive 2.

Note 2 : empty files cannot be merged, otherwise the

message, 'FILE SIZE EQUAL TO ZERO' will appear and
the process will be aborted.

Page 4¢

P

Note

: The Utility merges files by unit of 20K,

files bigger than 26K have to go through the process
'READING'
example, an object file of 64K has to be merge four

times :

READING
WRITING

READING
WRITING

READING
WRITING

READING
WRITING

EXAMPLE

and ‘WRITING' more than one time. For

R (merge 20K)
: (merge 20K)
: (merge 20K)
: (merge the rest of 4K)

To merge 'T1','T2','T3' in drive 1 to form
'TT' in drive 2.

: DOS URUN, "MERGE"

DESTINATION FILENAME ? [TT] [HIT RETURN]
DRIVE NO.: [2]

INPUT YOUR OBJECT FILES IN SERIES
PRESS CNTL 'S' WHEN FINISHED

FILENAME : [T1l] [HIT RETURN]
DRIVE NO. : [1]

READING ...
WRITING ...

FILENAME : [T2] ({HIT RETURN]
DRIVE NO. : [1]

READING ...

WRITING ...

FILENAME : [T3] [HIT RETURN]
DRIVE NO. : [1]

READING ...
WRITING ...

FILENAME : [CNTL S]
:READY

Page 41

The job is done, the result file
(destination file),'TT', will be on drive
1.

6.9 A General Note on Utilities :

User has
this is NOT

to press RETURN after they input the filename but
necessary after inputing the drive numbers.

Page 42

Chapter 7

HOW TO USE THE "HANDLER"™ TO CALL THE SUBROUTINES IN DOS

Introduction

THIS SECTION HELPS THE PROGRAMMERS TO WRITE UTILITIES BY
MAKING USE OF SOME OF THE SUBROUTINES IN THE DOS PROGRAM.

IN ADDITION TO "CALLING THE DRIVER",
PROGRAMMERS TO FULLY UTILIZE THE
WRITE THEIR UTILITY PROGRAMS.

THIS SECTION ENABLES
SUBROUTINES IN DOS AND

Two kinds of routines can be called. The first one is the
normal subroutines in DOS, the second is the routines that
execute the DOS commands as defined in the previous
chapters.

Programmers can use any one of the two methods to call the
former. The first method is to fill the handler block,
which will be defined 1later, and call "handler"--addr->

$B72C, the resultant parameters will be passed back by the
handler block. The second method is to fill the parameters
(normally registers) and call "handler2"--addr->$B783, the
resul tant parameters will be passed back by designated
registers and memory space.

addition to the

Calling the second kind of routines, in

command code, programmers should fill the tokens needed by
that command following the command code. Calling
"handlerl", the command defined(eq. close, open etc.) will

be executed.

The command codes of the first kind of routines are from @
to 127, those of the second kind of routines are from 128 to
143. 1f the command code is not in the range, error code
137 will be displayed on the screen.(in DOS version 1.3,
only @ to 36, 128 to 133 are used as command codes)

Page 43

Command Code Listing :

The following is the command code listing :

COMMAND
CODE

ROUTINE
NAME

PARAMETERS
PASSED

RESULT PURPOSE

19

18

CKFN+3

CKEN-3

FD.ADD

SCHDIR

PHYRW

RB POINT TO
FILE NAME TO
BE CHECKED.
FN. MUST
START WITH
THE TOKEN OF

OPEN QUOTATION

MARK & END

WITH THE TOKEN
OF CLOSE QUOTA-

TION MARK.

D=2

RB PTR. TO FILE

RB PTR.TO FN.
TO BE CHECKD

FILE MUST BE
OPENED OR
CREATED

RF.@=SECTOR
NO.

D=DRIVE/HEAD
SIDE, MSB:
@~-READ
1=WRITE

RC.@=SECOR NO.
RC.1=TRACK NO.

RE=BUFF, PTR.

FILE NAME SHOULD BE FOUND,
ELSE ERROR 130
R7, R9, RA, RE, RF CHANGED

FILE FOUND, D=8 RETURNED
NOT FOUND, D=1.

FN. SHOULD NOT BE FOUND,
ELSE, ERROR.

R7, R9, RA, RE, RF
CHANGED.

R8 STORE THE FILE
DESCRIPTION ADDR.
R9 CHANGED.

SEARCH THE DIR SECTOR

LOAD IT INTO SBESG.

(THE BEGINNING OF BUFFER)
R9 PTR. TO DE.ATTR OF THAT
DIR.

RE, R9, RF CHANGED.

THE DESIGNATED SECTOR IS
LOADED FROM DISKETTE TO
THE BUFFER OR STORED FROM
BUFFER.

R9, RE CHANGED.

Page 44

23

24

25

28

134
135
136
137

138

FILLFD

PHYBLK

SRHFRBLK

RWSETR

SAVE

LOAD

RUN

DEL

OPEN

CREATE

APPF

URUN

CLOSE

GETRD

PUTRD

GETWR

R8=SOURCE

R7=DESTINATION
RF.@=BYTE COUNT

D=@:READ PTR.

D=3:WRITE PTR.

FILE ALREADY
OPENED OR
CREATED.

FILE ALREADY
OPENED OR
CREATED

D=@ : READ
D=3 : WRITE
FILE ALREADY
OPENED OR
CREATED

DESCRIBED
LATER

DESCRIBED
LATER

DATA MOVED FROM SOURCE TO
DESTINATION. NO. OF DATA
BYTES MOVED IS DEFINED BY
BYTES COUNT.

SECTOR NO. AND BLOCK NO.

IS CALCULATED FROM THE

READ OR WRITE POINTER AS
DEFINED BY D. THE RESULTS
STORED IN THE APPROPRIATE
LOCATIONS OF FD.(eg. FD.wphy)
RF, R8, RE CHANGED.

IF PTR. >FILE SIZE, 143 ERR.

SEARCH FREE BLOCK,MARK THAT
BLOCK MAP. UPDATE THE FREE
BLOCK NO. UPDATE THE FD.WPHY
R9, R8 CHANGED.

SECTOR DESIGNATED IS READ

TO BUFFER. BUFFER CONTENT IS
WRITTEN FROM BUFFER TO
DESIGNATED SECTOR.

RE, R8, RC, RF CHANGED.

USAGE IS SAME AS THE NORMAL
COMMAND.

USAGE IS SAME AS THE NORMAL
COMMAND .

Page 45

140

141

142

143

PUTWR DESCRIBED USAGE IS THE SAME AS THE NORMAL .
LATER COMMAND ok
glo rf; stxd
READ " L ghi rf; stxd
ghi r8; stxd
WRITE " " glo re; stxd
ghi re; stxd
NEW " " 1di @ ; call $b7¢8; dc 24
Structure of Handler Block .
B. Method 2 (calling handlerw4Sb702c)
The structure of the handler block is shown below. Before calling the handler, the handler block must be
ORG SBEGQ filled first.
ADDR. NAME BYTE DESCRIPTION .
__ In the same case of the previous example, only D should
be filled.
BEGJ HD.BLK7 2 STORE REGISTER 7
BE@2 HD.BLKS 2 STORE REGISTER 8 Pl
BEO4 HD.BLK9 2 STORE REGISTER 9 Pl .
BE@6 HD.BLKA 2 STORE REGISTER A 1di Sbe; phi re
BE®S HD.BLKB 2 STORE REGISTER B 1di $10; plo re
BEJA HD.BLKC 2 STORE REGISTER C 1di @ ; str re
BE@C HD.BLKD 2 STORE REGISTER D call $b72¢ ; dc 24
BEGE HD.BLKE 2 STORE REGISTER E P
BEL@ HD.BLKAD 1 STORE D ACCUMULATOR P
BE@1 HD.BLKF 2 STORE REGISTER F . . X
BE@3 HD.FN 3p RESERVE FOR STORING FILE NAME After executing the instructions, sector no. and block
& TOKENS. no. will be stored into the appropriate memory space in
the file descriptor.
Examples .
C. Calling the DOS command by handler ($b72c¢)
Examples of calling dos subroutines: i
Assume the DOS CREATE,*1,"ABC"/2(CR) 1is needed to be
A. Method 1 (calling handler2--$b7@d): executed. The tokens are as follows :
PHYBLK can be called by DOS by using method 1. DOS CREATE,* 1 ‘" a B C "/ 2 CR
Since rf, r8 and re will be changed after the execution TOKENS : CA D2 00000001 C2 CF 41 42 43 CE CB D2 00000082 @D
of the subroutine, they should be saved first in the
program. Assume the file has already been opened and Another examples :
the read pointer given.
DOS READ,* 1 , @ 4 4 9 @ , @ 8 ¢ 1 1 CRrR
TOKENS : CA D2 00000001 C2 DS 34 34 3@ 30 C2 D@ 30 3¢ 31 31 @D
Page 46 page 47

. . . X APPENDIX A
Now, open a existing file in an assembly program : DOS

OPEN,*1,"ABC" ‘

SUMMARY OF DOS COMMANDS

.
H
.

s

: ; «
call $b72c¢; dc 132 ? SYMBOLS
dc $CA,$D2,565,SGG,SEZ,SG1,5C2,$CE,$41,$42,$43,$BD ' DR ~ DRIVE NUMBER
P ; F.N. - FILE NAME
R F - FORTH FILE TYPE
: B - BINARY FILE TYPE
NOTE 132 IS THE COMMAND CODE FOR "OPEN", $D2 MEANS THE : SADR - STARTING ADDRESS
FQLLOWING NUMBER IS A CONSTANT. THE TOKENS WE NEED TO FILL 1 EADR -~ ENDING ADDRESS
ARE THOSE AFTER THE COMMAS FOLLOWING THE DOS COMMANDS. ; WN -~ WORKING NUMBER
! R(N) ~ FIXED RECORD LENGTH
I VAR ~ VARIABLE

* GENERAL COMMAND
1. DOS CAT [/DR}

l 2. DOs SAVE,"F.N" [,F] {,€SAaDR] [,@EADR] [,B] [/DR]

f 3. DOS LOAD,"F.N" [/DR]

{ 4. DOS RUN,"F.N" [/DR]

f 5. DOS URUN,"F.N" [/DR]

| 6. DOS DEL,"F.N" [/DR]

7. DOS REN,"F.N","F.N" [/DR]

8. DOS NEW

* TEXT FILE COMMAND

9. DOS CREATE,*WN,"F.N" {,/R(N)] [/DR]

16. DOS OPEN,*WN,"F.N" [/DR]

11. DOS CLOSE, [*WN]

12. DOS WRITE, [*WN] [,/R(N)] ARRAYS

13. DOS READ, [*WN] [,/R(N)]} ARRAYS

14. DOS WRALT, [*WN] ARRAYS

Page 49
Page 48

DOS RDALT, [*WN] ARRAYS APPENDIX B

DOS APPF,*WN,"F.N" [/DR] COMX 35 DOS ERROR MESSAGE

DOS GETRD, [*WN,] VAR
186 TEXT FILE RECORD LENGTH 1S NOT FIXED

DOS PUTRD, [*WN,] VAR
e [5WN,] 161 RECORD NUMBER EXCEEDS FILE SIZE

DOS GETWR, [*WN,] VAR
192 DISK READ ERROR

DOS PUTWR, [*WN,] VAR 163 READ OR WRITE POINTER EXCEEDS FILE SIZE
104 SECTOR READ OR WRITE ERROR

165 SEEK ERROR

186 DISKETTE WRITE PROTECTED

107 FILE LOCKED

11l@ SLASH MISSING

111 END OF COMMAND NOT FOUND

112 WORK ID. NUMBER ERROR

113 RECORD LENGTH MISSING

114 MORE THAN 8 ARRAYS ALREADY EXIST

115 STRING OR ARRAY VARIABLE ERROR

116 NOT INTEGER OR TOO LARGE INTEGER EXIST
117 NOT A FIXED RECORD LENGTH FILE TYPE
118 STRING EXCEEDS RECORD LENGTH

12¢ ADDRESS SYNTAX ERROR

121 DRIVE NUMBER ARGUMENT OR SYNTAX WRONG
122 NOT ENOUGH DISK MEMORY

123 PARENTHESIS MISSING

124 INPUT FILE NAME ERROR

Page 51
Page 5@

25
26
27
28
29
36
31
32
33
34
35
36

37

COMMA MISSING

COMMAND DOES NOT EXIST

SYNTAX ERROR ON 'SAVE' COMMAND
QUOTATION MARK MISSING

FILE NAME ALREADY OPENED OR EXISTS IN DIRECTORY
FILE NOT FOUND IN DIRECTORY

NO SUCH KIND OF PROTECTION

MORE THAN 5 FILES ALREADY OPENED
FILE NAME NOT YET OPENED

MORE THAN 51 DIRECTORY ENTRIES
FILE WRITE PROTECTED

DISK OR FILE NON-COPYABLE

NO SUCH HANDLER COMMAND CODE

Page 52

APPENDIX C

DISK STRUCTURE

THIS SECTION EXPLAINS THE RELATIONSHIP AMONG "™SIDE", "TRACK",
"SECTION" AND "TRACK DENSITY".

The relationship among track, sector and track density is shown

in the figure below.

TRACK @
16 Sector/Track)

TRACK 35 (if double
Track density, 70
Tracks/Side)

%¥ |f a double-sided diskette is used in a drive with double side feature,
double~side option can be selected in "INIT'.

Fig. 1

As shown in the diagram, track 1is the cycle 1lying on the
diskette, the outer most circle is track 8. One track can be
divided into blocks called sector, normally one sector consists
of 128 to 256 bytes, which is predefined in the format procedure.

Normally, 48 tpi(track per inch) stands for single track density,
96 tpi stands for double track density. In the. formatting
procedure, 35 tracks are formed if we select single track desity,
otherwise 7¢ tracks are formed. (NOTE : ONLY USE double track
density diskette in the double track density disk drive.)

If the disk drive is with double side feature, double side option
can be selected.

Page 53

(In COMX: 128 Bytes/Sector

APPENDIX D

THE COMX DISK DRIVE can be accessed directly from machine
-anguage through the use of the DRIVER subroutine, which is part
s the DOS.

Every diskette initialized by the COMX DISK DRIVE is separated
into 35 tracks for side 1 and side 2, Basically, the tracks are
arranged in separate concentric circles, with the large hole in
the centre of the diskette forming the common center of the
circles. Track @ is on the outer edge of the diskette, while
track 34 1is nearest to the center. The head of the disk drive
"oves to different tracks on the diskette, where it either reads
nformation off the diskette, or writes information onto the
:iskette.

There are 16 sectors on each track of the diskette. The sectors
within a track are individually numbered, consecutively, @ to 15
around the diskette. Sectors allow the user to work with single
7locks of 128 bytes.

> use the DRIVER subroutine, the user must fill up the
.oformation to the COMMUNICATION BLOCK. Then call the starting
address of the DRIVER subroutine (at location $Cea2).

COMMUNICATION BLOCK

Location Description
3BF30 Command code g = RESTORE -~ SET HEAD TO TRACK ¢
1 = SEEK -- SEARCH DESIRED TRACK
2 = READ SECTOR -~ SEEK TRACK & READ
ONE SECTOR
3 = WRITE SECTOR -~ SEEK TRACK &
WRITE ONE SECTOR
$BF31 Drive number and side number
$14 = DRIVE 1 & SIDE 1
$34 = DRIVE 1 & SIDE 2
$18 = DRIVE 2 & SIDE 1
$38 = DRIVE 2 & SIDE 2
SBF32 Track numbr @-34
SBF33 Sector number @-15
$BF34 Single or double track density

8 = single track density
$FF = double track density

Page 54

$BF35
$BF36

SBF37

$BF38
SBF39
$BF3a
$BF3B

$BF3C

High byte of buffer location
Low byte of buffer location

Stepping rate @ = 3¢ ms
= 20 ms -
12 ms
6 ms

W N

B

Previous drive

Current drive track number
Previous drive track number
Read or write status

Seek status

Page 55

APPENDIX E

{O0OTING PROCEDURE OF COMX DOS V1.2

. whep the first DOS command is executed, a subroutine in ROM
hich is called ‘boot#' will run, This subroutine load the
-ector 15 of track @ on the disk to the memory location of $44¢¢
£ RAM.

. Then the program counter will set to 34000 and execute the
rogram which has been already loaded., This subroutine is called
bootl’'. The 'bootl' program loads the sector # to sector 7 of
rack 1 on the disk to the memory location of $B70¢ to SBAFF of
‘AM. This part is called 'boot2',

. The ‘'boot2' contains three things. The first thing is the
andler, it is used for users to call the DOS subroutines.
econd thing is the jump table, this table contains many entry
oints of subroutines. The entry points is used for calling by
he handler. The third thing is a subroutine which will be
xecuted after running 'bootl',

- The subroutine of 'boot2' is for setting some flags and
arameters of the system,

Page 56

APPENDIX F

The hardware structure of the floppy disk controller is shown
clearly in the figure below. The circuit is composed of 5 major
parts : decoder circuit, latch circuit, a BKB EPROM chip, «clock
circuit, driver circuit and the floppy disk controller chip
(1778). Please refer to fig. 2 & fig. 3.

NOTE :

1. DS=1, Q=1, OUT2 COMMAND IS ISSUED, THEN DATA LATCH TO F3.

2. Q=@, OUT2 OR INP2 IS ISSUED, THEN 1770 IS SECLECTED.

3. WHEN ADDRESS IS FROM C@@¢ TO DFFF OR DD@ TO DDF, F4 IS
SECTECTED.

4. CLOCK TO 1778 (F5) 1S 8 MHZ+-1%.
5. WHEN THE CONTROLLER CARD IS SELECTED, DS=1 & D1 IS ON.
6. WHEN DISK DRIVE IS SELECTED F9 PIN 15 ALWAYS LOW (ENABLE) .

7. Fl1 IS USED TO LATCH THE HIGH BYTE OF THE ADDRESS AT THE
RISING.

8. F3 IS USED TO LATCH THE SELECT CODES WHICH SELECT THE
REGISTERS USED IN THE CONTROLLER 1776, THE DRIVE BEING USED AND
WHICH SIDE OF THE DISK TO BE USED.

9. F9 LATCHES THE DRQ & INTRQ SIGNALS FROM THE CONTROLLER 177¢
IN ORDER TO KEEP TRACK OF THE STATUS OF THE CONTROLLER.

1. F4 IS AN EPROM, IN WHICH THE DOS IS PROGRAMED. AFTER THE
DISK CONTROLLER CARD IS SELECTED, F4 IS SELECTED. IN EXECUTING
THE DOS, OE' IS ENABLED TOO.

11. ABOUT THE 1770 SIGNAL LINES, REFER TO THE 1770 DATA SHEET.

Page 57

as2d

e}

Comx—~ 35 aus

e 2 e D)2
o Dol A A
y F2 i1 Lo
X)
P
(ot 1 > .
.4
! bV
RS e B Wt LEDVAS
L a8 F? Ba 3L 61—y RS 2 25 o repepen
ralM b ¢] 8 F9 Y
~1L~££i>FE /5. - i WMB i
[8] R _ B ‘D'_ 3 it Lida
i PV N {:, 8 I—L" ;ﬂj :)"‘L'-““‘“—“"""" L
Fn Fs 3-_‘
aEsle — 4{:'——' ’ 2> :@B . s :
o lB N L) 0 e 5|
8 -3 A as] :ﬁga 32k muser
o — 9@010_ _..3 oo aH 2 -
o - o Al Y Df"‘ [l 43 Fe
S — s O B I e =1 L) e e
: e T I — - »
Dol Qu , UM ’ 19 aets L i 3 i !
051 v [05 oI N Aln we n" i malidand
D; 13155012 b T Vi- S 20 ; . Fi6 24
ol 7
S Jr= " MO e T R
As F6
s L N e &l s gwlﬁ_.__:fllﬁ}’___l cree ns
ArlA caz EM o S o 24
A F'6
anlul A4 al8 [l 2 o2 L2 b g | oevmcreey
e 129 it 3 Y AR t 3 s F5 e D‘ Movmea. Y
YT S, f— A 11 ~ 2 N Dion s g oo 24
A 5 . o5 Dot Vol £
M e = B e LRy e
Py P I — 4R 1 oI] Frs 123 4
» or g 5T T ::r e i 22 ll<) l : m 2 renn @
FEnja 9 'fi " "Te) 2 vee — v R5 74
S
v L J% ‘ 3 I L i 8¢ 2 2
x5) A —lD_L___._ﬂg,g ca 8]y -
A -] A ¥
. ofed iz focglo iy H L s,
q 7
7 ¥2 F2 7.4
p . G P o3 4
AT 7 o1 4 ‘5 R
_%J L% $
¥
é - s]’v Rpn
9]Fe A F2 2 2
As 17
Ak ‘{g Q5 F1 - 40174 F11- 4050 RS -~ 620 C1 - 33pFf CRI- [N 914
~AT FZ -~ 74LS04 F12- 4075 R6 - 620 C2 ~ 10pF CR2- IN 914
B — . } R6 F3 - 40174 F13- 4075 R7 - 620 C3-0.1F Y1 - g8z
a fararal c2 F4 - 2764 F14- 7438 RB - 620 C4 - 0.1 F D01 - LED
U 111 P9 F5 - 1770 F15- 74LS08 R9 - 10K CS - 47 F D2 - LED .
TITT ,____“:” F6 - 4068 Fle- 7433 RI- K C5 - 0.0 F LI~
: L 4 4 cI ~ 4072 Rt - 10K R11- 1K C? - 0.1 F
, €3 (6 (7 ¢B Yt ga - 4089 R2 - 10K R12- 1K C8 - 0.1 F
T 9 - 4503 R3 - 10K R13- 1X
g:/;tl . Fi0- 4072 R4 - 10K R14=- 10K
-

:;_1

Latch 2

Block Diagram of the Disk Controller Card

¥ The bus labelled 'DATA' are all connected together.

Fig. 2

-
— Control signals & Confroller & Drive Selecti N 2
ontrol sign ntroller ive Selections =
DATA o A5 M
NN
Low address byte
" 17
> LN C
High address & Z
g IIJ||IIIIH// — byte e S [
& | High bytes - 17 .
(address) 9 1] ©
1 =& = DATA =
R 2 =
1] 5
O
TPA ﬂ x
2 :
Al5 i ° m
Al4 - . . 5
2 Chip enables & Control lines
N8 n%d
Control signals o
1
.*l
x5
0 0
oL
0o

Pacge 59

Signals that control the Drive

